

Dr. Sontyana Adonijah Graham

Email: adonijahgraham7@gmail.com

Education

Ph.D. Electronics and Information Convergence Engineering, Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Engineering, Kyung Hee University, Republic of Korea. 2018-2023
Thesis: A study on advanced materials and hybrid nanogenerators for sustainable energy harvesting and IoT applications.

M.Sc. Nanoscience and Nanotechnology, at the National Center for Nanoscience and Nanotechnology, University of Madras, Tamil Nadu, India. 2015-2017

B.Sc. Nanoscience and Nanotechnology, Department of Nanotechnology, Acharya Nagarjuna University, Andhra Pradesh, India. 2012-2015

Research Experience

- Post-doctoral researcher, Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Republic of Korea. & KAIST InnoCORE PRISM-AI Center, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea. 10.2025-ongoing
- Post-doctoral researcher, Institute for Wearable Convergence Electronics (IWCE), Kyung Hee University, Republic of Korea. 09.2023 – 08.2024
- Ph.D. Electronic Engineering at the Department of Electronic and Information Convergence Engineering, Kyung Hee University, Republic of Korea. 08.2018 - 08.2023
- Researcher at the “Targeted Imaging and Nanomedicine Laboratory, Department of Biomedical Science, Chonnam National University Medical School, Republic of Korea. 09.2017- 08.2018
- Master's degree project at the Microwave Laboratory, Department of Physics, Indian Institute of Technology (IIT) Madras, Tamil Nadu, India. 06.2016 - 04.2017
- Internship at the Department of Nanoscience and Nanotechnology, Bharathiar University, Tamil Nadu, India. 05.2016 - 06.2016

Publication List ([Google Scholar](#), [ORCID](#)) [Impact factor (I.F.), [Blue](#) colour – Hyperlink]

Total citations: 2132, **h-index:** 26, **i10-index:** 43

Selected First/co-first authored publications

1. **Sontyana Adonijah Graham**, et. al. Metal-Organic Framework Embedded Electrospun Fibrous Membranes-Based Hybrid Nanogenerators with Hierarchical Modified Polyamide

Films for Mechanical Energy Harvesting and IoT Applications. *Advanced Functional Materials* (2025) e07125, **I.F. 19** (doi.org/10.1002/adfm.202507125).

2. **Sontyana Adonijah Graham**, et. al. “Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters”, *ACS Energy Letters* (2020) 5, 2140–2148. **I.F. 23.991**. (doi.org/10.1021/acsenrgylett.0c00635)
3. **Sontyana Adonijah Graham**, et. al, “Multifunctional thermochromic dye-integrated hybrid nanogenerator for mechanical energy harvesting and real-time sensing”, *Advanced Functional Materials* (2024) 2409608, **I.F. 19** (doi.org/10.1002/adfm.202409608)
4. **Sontyana Adonijah Graham**, et. al. “Engineering squandered cotton into eco-benign microarchitected triboelectric films for sustainable and highly efficient mechanical energy harvesting”, *Nano Energy* (2019) 61, 505-516. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2019.04.081)
5. **Sontyana Adonijah Graham**, et. al. “Triboelectric charge modulation to understand the electrification process in nanogenerators combined with an efficient power management system for IoT applications”, *Nano Energy* (2023) 111, 108413, **I.F. 19.069** (doi.org/10.1016/j.nanoen.2023.108413)
6. **Sontyana Adonijah Graham**, et. al. “Biocompatible electrospun fibers-based triboelectric nanogenerator for energy harvesting and healthcare monitoring”, *Nano Energy* (2022) 100, 107455. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2022.107455)
7. **Sontyana Adonijah Graham**, et. al. “Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home”, *Nano Energy* (2021) 80, 105547. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2020.105547)
8. Bhaskar Dudem, **Sontyana Adonijah Graham**, et. al. “Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications”, *Nano Energy* (2021) 83, 105819. **I.F. 19.069**, (Equal first authorship). (doi.org/10.1016/j.nanoen.2021.105819)
9. **Sontyana Adonijah Graham**, et. al. “Mechanical and Acoustic-Driven Multiferroic-Based Hybrid Nanogenerator for Energy Harvesting and Sensing Applications”, *Small* (2024) 2308428, **I.F. 13.3** (doi.org/10.1002/smll.202308428)
10. **Sontyana Adonijah Graham**, et. Al. “Enhanced electrical output via 3D printed dual nanogenerator based on Bi₂WO₆ for mechanical energy harvesting and sensing applications”, *ACS Sustainable Chemist and Engineering* (2024) 12, 785-794, **I.F. 9.224**. (doi.org/10.1021/acssuschemeng.3c05245) (Co-first author).

Selected Co-authored/Collaboration publications

1. Seneke Chamith Chandrarathna, **Sontyana Adonijah Graham**, et. al. “An Efficient Power Management System Using Dynamically Configured Multiple Triboelectric Nanogenerators and Dual-Parameter Maximum Power Point Tracking”, *Advanced Energy Materials* (2022) 12.2, 2103249. **I.F. 29.698** (doi.org/10.1002/aenm.202103249)
2. Harishkumarreddy Patnam, **Sontyana Adonijah Graham**, et. al. “Highly-flexible and harsh temperature-tolerant single-electrode mode triboelectric nanogenerators via

biocompatible ionic liquid electrolytes for wearable electronic applications”, *Advanced Composite Hybrid Materials* (2024) 7(2), 5, **IF: 20.1** (doi.org/10.1007/s42114-024-00845-2)

3. Anand Kurakula, **Sontyana Adonijah Graham**, et. al. “Multimodal Energy Generation and Intruder Sensing Platform via Aluminum Titanate/Poly-Glucosamine Composite Film-Based Hybrid Nanogenerators”, *Advanced Functional Materials* (2024) 2307462. **I.F. 19** (doi.org/10.1002/adfm.202307462)
4. Mandar Vasant Paranjape, Jun Kyu Lee, Punnarao Manchi, **Sontyana Adonijah Graham**, et. al. “Phosphor-Loaded Triboelectric Film-Based Multipurpose Triboelectric Nanogenerators for Highly-Efficient Energy Harvesting, Sensing, and Self-Illumination Applications”, *Advanced Functional Materials* (2024) 2405838. **IF: 19** (doi.org/10.1002/adfm.202405838)
5. Punnarao Manchi, Mandar Vasant Paranjape, **Sontyana Adonijah Graham**, et. al. “Niobium-Doped Bismuth Titanate-Loaded PVDF-HFP Flexible Composite Films for Self-Powered Stair Sensing and Emergency Alert Applications via Hybrid Mechanical Energy Harvesters”, *Advanced Functional Materials* (2024) 2400371. **I.F. 19** (doi.org/10.1002/adfm.202400371)
6. Paranjape Mandar Vasant, **Sontyana Adonijah Graham**, et. al. “Microarchitected Strontium Doped Silver Niobate Embedded Ecoflex Composite Films for Highly Efficient Box-type Mechanical Energy Harvesters”, *Nano Energy* (2023) 109005. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2023.109005)
7. Paranjape Mandar Vasant, **Sontyana Adonijah Graham**, et. al. “Microarchitected Strontium Doped Silver Niobate Embedded Ecoflex Composite Films for Highly Efficient Box-type Mechanical Energy Harvesters”, *Nano Energy* (2023) 109005. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2023.109005)
8. Mandar Vasant Paranjape, **Sontyana Adonijah Graham**, et. al. “3D printed bidirectional rotatory hybrid nanogenerator for mechanical energy harvesting”, *Nano Energy* (2021) 88, 106250. **I.F. 19.069** (doi.org/10.1016/j.nanoen.2021.106250)
9. Kavarthapu Venkata Siva, **Sontyana Adonijah Graham**, et. al. “Electrospun ZnSnO₃/PVDF-HFP Nanofibrous Triboelectric Films for Efficient Mechanical Energy Harvesting”, *Advanced Fiber Materials* (2023), 1-14. **I.F. 16.1** (doi.org/10.1007/s42765-023-00295-3)
10. Chandrarathna Seneke Chamith, **Sontyana Adonijah Graham**, et. al. “Analysis and Experiment of Self-Powered, Pulse-Based Energy Harvester Using 400 V FEP-Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multi-Functional IoT Applications”, *Advanced Functional Materials* (2023), 33.17, 2213900. **I.F. 19.924** (doi.org/10.1002/adfm.202213900)

Technical Skills

- **Micro/Nanofabrication & Processing**

Patterning: Soft imprint lithography, photolithography, thermal imprint lithography.

Thin-Film Deposition: RF/DC magnetron sputtering, plasma-enhanced chemical vapor deposition (PECVD), electron-beam evaporation, thermal evaporation. **Chemical**

Synthesis: Chemical bath deposition, co-precipitation, anodization, electrodeposition, electropolishing. **Etching:** Inductively coupled plasma (ICP) etching, wet chemical etching

- **Materials & Device Characterization**
Structural & Surface Analysis: Scanning electron microscopy (SEM), atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), 3D laser scanning, confocal microscopy. **Spectroscopic & Compositional Analysis:** Raman spectroscopy, UV–Vis–NIR spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). **Electrical & Functional Measurements:** Dielectric and ferroelectric measurements; oscilloscope-based analysis (Tektronix), current preamplifiers, Keithley 6514 electrometer for nanogenerator and sensor performance evaluation
- **Software & Data Analysis**
Simulation: COMSOL Multiphysics (finite element modeling). **Modeling & Analysis:** Autodesk 3ds Max, Origin, LabVIEW
- **Research & Collaboration**
Independent and collaborative research experience, including experimental design, device fabrication, data interpretation, and mentoring of PhD and master's students within multidisciplinary research teams

Selected Conference Presentations

1. **Sontyana Adonijah Graham**, J.S. Yu. “Multiferroic-based triboelectric nanogenerator for energy harvesting and sensing applications.” The 21st International Nanotech Symposium & Exhibition, Nano Korea 2023 Symposium, Kintex, Korea, July 5, 2023. (**Oral presentation**)
2. **Sontyana Adonijah Graham**, J.S. Yu. “Wearable triboelectric nanogenerator based on enhanced charge carrier triboelectric film for harvesting mechanical energy,” 2022 *Korea Research Fund University Focused Research Institute Performance Exchange Meeting in the Field of Science and Engineering*, Korea, Oct. 12, 2022. (**Poster presentation**).
3. **Sontyana Adonijah Graham**, J.S. Yu. “Synthesis of bismuth composite-based hybrid metamaterials for discrete energy harvesting,” *European Material Research Society in Warsaw*, Poland, Sep. 19-22, 2022. (**Oral presentation**).
4. **Sontyana Adonijah Graham**, J.S. Yu. “Electrospun biocompatible fibers as a tribosensor for human body motion” *The 20th International Symposium on the Physics of Semiconductors and Applications*, Jeju, Korea, July 17-21, 2022. (**Oral presentation**).
5. **Sontyana Adonijah Graham**, J.S. Yu. “Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical energy harvesting, sensing and energy storage in a smart home” *The Korean Physical Society*, Korea, Nov. 4-6, 2020 (**Oral presentation**).

Selected International and National Awards and Achievements

1. **Graduate student award**, in recognition of an outstanding paper entitled “Synthesis of bismuth composite-based metamaterials for discrete energy harvesting” European – Material Research Society (E-MRS) 2022 fall meeting, Warsaw University of Technology, Poland (Sep. 2022)

2. **Excellent patent award**, awarded by the BK21 convergence future communication innovation talent cultivation, “Patent title: Cotton-based high conductivity triboelectric nanogenerator”. Kyung Hee University, Republic of Korea (Nov. 2021)
3. **Best presentation award** (oral presentation), in recognition of an outstanding research work presentation entitled “Engineering biomaterials for sustainable and autonomous electronic devices” 1st International Virtual Conference on Nanomaterials, India. (Sep. 2020)
4. **Best poster presentation award**, in recognition of an outstanding research work presentation entitled “Fabrication and characterization of micropatterned cellulose films for energy generation” Korean Polymer Society, Republic of Korea (Feb. 2019)

Selected Patents

1. Cotton-Based Biodegradable Nano Power Generation Device, [Org. Korean Intellectual Property Office](#). Ref. No. 10-2020-0144708, Approved date: 2019-06-19,
Inventor names: Jae Su Yu, Sontyana Adonijah Graham, and Dudem Bhaskar
2. Smart Home Mechanical Energy Harvesting, Sensing and Energy Storage by Cotton-Based Triboelectric Nanogenerator, [Org. Korean Intellectual Property Office](#). Ref. No. 10-2022-0119871, Approved date: 2021-02-22,
Inventor names: Jae Su Yu, and Sontyana Adonijah Graham.
3. 3D Printed Bidirectional Rotating Hybrid Nanogenerator for Mechanical Energy Harvesting, [Org. Korean Intellectual Property Office](#). Ref. No. 10-2023-0061870, Approved date: 2021-10-29.
Inventor names: Jae Su Yu, Paranjape Mandar Vasant, and Sontyana Adonijah Graham.
4. Micropatterning to Release High Surface Area Triboelectric Films for Multimode Operation Triboelectric Nanogenerator, [Org. Korean Intellectual Property Office](#). Ref. No. 10-2023-0085496, Approved date: 2021-12-07
Inventor names: Jae Su Yu, and Sontyana Adonijah Graham.

News Report

- New Self-powered Energy Supply Device Harvests Electricity during Everyday Activities. Kyung Hee University Focus. 2020-09-07
Web link: [Kyung Hee University \(khu.ac.kr\)](#).
- Harvesting Electric Energy from Physical Exercise in Everyday Life. Kyung Hee University Focus. 2022-02-07
Web link: [Kyung Hee University \(khu.ac.kr\)](#).
- Development of eco-friendly, high-efficiency triboelectric nano power generation device. Kyung Hee University Focus. 2023-07-17
Web link: [Kyung Hee University \(khu.ac.kr\)](#).

Reference

Will be provided upon request.